142 research outputs found

    Dynamics of dilute disordered models: a solvable case

    Full text link
    We study the dynamics of a dilute spherical model with two body interactions and random exchanges. We analyze the Langevin equations and we introduce a functional variational method to study generic dilute disordered models. A crossover temperature replaces the dynamic transition of the fully-connected limit. There are two asymptotic regimes, one determined by the central band of the spectral density of the interactions and a slower one determined by localized configurations on sites with high connectivity. We confront the behavior of this model to the one of real glasses.Comment: 7 pages, 4 figures. Clarified, final versio

    Systematic perturbation approach for a dynamical scaling law in a kinetically constrained spin model

    Full text link
    The dynamical behaviours of a kinetically constrained spin model (Fredrickson-Andersen model) on a Bethe lattice are investigated by a perturbation analysis that provides exact final states above the nonergodic transition point. It is observed that the time-dependent solutions of the derived dynamical systems obtained by the perturbation analysis become systematically closer to the results obtained by Monte Carlo simulations as the order of a perturbation series is increased. This systematic perturbation analysis also clarifies the existence of a dynamical scaling law, which provides a implication for a universal relation between a size scale and a time scale near the nonergodic transition.Comment: 17 pages, 7 figures, v2; results have been refined, v3; A figure has been modified, v4; results have been more refine

    From Large Scale Rearrangements to Mode Coupling Phenomenology

    Full text link
    We consider the equilibrium dynamics of Ising spin models with multi-spin interactions on sparse random graphs (Bethe lattices). Such models undergo a mean field glass transition upon increasing the graph connectivity or lowering the temperature. Focusing on the low temperature limit, we identify the large scale rearrangements responsible for the dynamical slowing-down near the transition. We are able to characterize exactly the dynamics near criticality by analyzing the statistical properties of such rearrangements. Our approach can be generalized to a large variety of glassy models on sparse random graphs, ranging from satisfiability to kinetically constrained models.Comment: 4 pages, 4 figures, minor corrections, accepted versio

    Sparse random matrices: the eigenvalue spectrum revisited

    Full text link
    We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum.Comment: 18 pages, 7 figures. Accepted version, minor corrections, references adde

    Analytic determination of dynamical and mosaic length scales in a Kac glass model

    Full text link
    We consider a disordered spin model with multi-spin interactions undergoing a glass transition. We introduce a dynamic and a static length scales and compute them in the Kac limit (long--but--finite range interactions). They diverge at the dynamic and static phase transition with exponents (respectively) -1/4 and -1. The two length scales are approximately equal well above the mode coupling transition. Their discrepancy increases rapidly as this transition is approached. We argue that this signals a crossover from mode coupling to activated dynamics.Comment: 4 pages, 4 eps figures. New version conform to the published on

    Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice

    Full text link
    We discuss analytical approximation schemes for the dynamics of diluted spin models. The original dynamics of the complete set of degrees of freedom is replaced by a hierarchy of equations including an increasing number of global observables, which can be closed approximately at different levels of the hierarchy. We illustrate this method on the simple example of the Ising ferromagnet on a Bethe lattice, investigating the first three possible closures, which are all exact in the long time limit, and which yield more and more accurate predictions for the finite-time behavior. We also investigate the critical region around the phase transition, and the behavior of two-time correlation functions. We finally underline the close relationship between this approach and the dynamical replica theory under the assumption of replica symmetry.Comment: 21 pages, 5 figure

    Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions

    Full text link
    We study the performances of stochastic heuristic search algorithms on Uniquely Extendible Constraint Satisfaction Problems with random inputs. We show that, for any heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent) largest ratio αa\alpha_a of constraints per variables for which a search algorithm is likely to find solutions is smaller than the critical ratio αd\alpha_d above which solutions are clustered and highly correlated. In addition we show that the clustering ratio can be reached when the number k of variables per constraints goes to infinity by the so-called Generalized Unit Clause heuristic.Comment: 15 pages, 4 figures, Proceedings of the International Workshop on Statistical-Mechanical Informatics, September 16-19, 2007, Kyoto, Japan; some imprecisions in the previous version have been correcte

    Clustering of solutions in the random satisfiability problem

    Full text link
    Using elementary rigorous methods we prove the existence of a clustered phase in the random KK-SAT problem, for K≥8K\geq 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.Comment: 4 pages, 1 figur

    Message passing for vertex covers

    Full text link
    Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization problem under hard constraints. In this paper, we develop and analyze message passing techniques, namely warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of random graphs can be recovered starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR

    Surface Tension in Kac Glass Models

    Full text link
    In this paper we study a distance-dependent surface tension, defined as the free-energy cost to put metastable states at a given distance. This will be done in the framework of a disordered microscopic model with Kac interactions that can be solved in the mean-field limit.Comment: 13 pages, 6 figure
    • …
    corecore